二〇一六年数量和解析技术十大趋势,巩固型解析成为尤为重要卖点

数字化颠覆带来的挑战——有太多的数据——也创造了前所未有的机遇。

Gartner:2019年数据和分析技术十大趋势

图片 1

近日在悉尼举行的Gartner数据与分析峰会上,Gartner研究副总裁Rita Sallam表示,数据和分析领导者必须分析这些趋势对业务的潜在影响,并相应调整业务模式和运营,否则就有失去竞争优势的可能。

图片 2

处于数据和分析位置的领导人必须审视这些趋势对业务带来的潜在影响,并相应调整业务模式和运营,否则就有可能失去竞争优势。

她说:数据和分析技术不断发展,从支持内部决策到持续的智能、信息产品和任命首席数据官。深入了解技术趋势对于推动这一不断变化的趋势,并根据业务价值对其进行优先排序,这些都至关重要。

日前举行的Gartner数据与分析峰会上,Gartner研究副总裁Rita Sallam表示,数据和分析领导者必须分析这些趋势对业务的潜在影响,并相应调整业务模式和运营,否则就有失去竞争优势的可能。

增强型数据分析,增强型数据管理,持续型智能,可解释的 AI,数据结构,NLP/对话式分析,商业 AI 和 ML,区块链和持久性内存服务器共同构成了 Gartner 2019 年十大「数据和分析技术趋势」。

根据Gartner副总裁、杰出分析师Donald Feinberg表示,数字化颠覆带来的挑战有太多的数据也创造了前所未有的机遇。大量数据以及由云实现的日益强大的处理能力,意味着现在我们可以大规模地训练和执行必要的算法,以最终发挥人工智能的全部潜力。

她说:“数据和分析技术不断发展,从支持内部决策到持续的智能、信息产品和任命首席数据官。深入了解技术趋势对于推动这一不断变化的趋势,并根据业务价值对其进行优先排序,这些都至关重要。”

最近两天里,2 月 18 日-19 日,在悉尼举行的 Gartner 数据与分析峰会上,增强型数据分析和可解释的人工智能成为焦点。

Feinberg说:数据的大小、复杂性和分布式特性,以及数字化业务要求的行动速度以及持续智能,意味着需要打破僵化的、集中式的架构和工具束缚。任何企业的持续生存,都将取决于灵活的、以数据为中心的架构,以响应不断变化的速度。

根据Gartner副总裁、杰出分析师Donald Feinberg表示,数字化颠覆带来的挑战——有太多的数据——也创造了前所未有的机遇。大量数据以及由云实现的日益强大的处理能力,意味着现在我们可以大规模地训练和执行必要的算法,以最终发挥人工智能的全部潜力。

知名调研机构 Gartner 称,增强型数据分析、持续型智能和可解释的人工智能是数据和分析技术的主要趋势之一,并在未来三到五年内具有显著的颠覆性潜力。

Gartner建议数据和分析领导者与高级业务负责人讨论一下他们的关键业务优先级,并探索以下主要趋势如何实现这些优先级:

Feinberg说:“数据的大小、复杂性和分布式特性,以及数字化业务要求的行动速度以及持续智能,意味着需要打破僵化的、集中式的架构和工具束缚。任何企业的持续生存,都将取决于灵活的、以数据为中心的架构,以响应不断变化的速度。”

Gartner 副总裁兼杰出分析师 Donald Feinberg 认为,数字化颠覆带来的挑战——数据太多——也创造了前所未有的机遇。大量数据和由云实现的日益强大的处理能力意味着现在可以大规模地训练和执行必要的算法,以最终兑现出 AI 的全部潜力。

趋势1:增强分析

Gartner建议数据和分析领导者与高级业务负责人讨论一下他们的关键业务优先级,并探索以下主要趋势如何实现这些优先级:

Donald 表示,「任何企业的持续生存都将取决于灵活的,以数据为中心的架构,以响应不断变化的速度。」

增强分析是数据和分析市场的下一波颠覆性发展趋势。增强分析采用机器学习和人工智能技术来转换开发、消费和共享分析内容的方式。

趋势1:增强分析

他还谈道,「数字化业务需要大量复杂且分布式的数据、迅速行动以及持续型智能,这意味着僵化且集中式的架构和工具分崩离析。」

到2020年,增强分析将成为分析和BI、数据科学和机器学习平台、嵌入式分析新增采购的主要驱动力。数据和分析领导者为在平台功能成熟的时候采用增强分析技术做好计划。

增强分析是数据和分析市场的下一波颠覆性发展趋势。增强分析采用机器学习和人工智能技术来转换开发、消费和共享分析内容的方式。

Gartner 研究副总裁 Rita Sallam,数据和分析领导者必须审视这些趋势对业务带来的潜在影响,并相应调整业务模式和运营,否则就有可能失去竞争优势。

趋势2:增强数据管理

到2020年,增强分析将成为分析和BI、数据科学和机器学习平台、嵌入式分析新增采购的主要驱动力。数据和分析领导者为在平台功能成熟的时候采用增强分析技术做好计划。

「数据和分析的形势不断发展,从支持内部决策到持续型智能,信息产品和任命首席数据官,」Rita 说道,「深入了解它们对于推动这种不断变化的技术趋势,并根据业务价值对它们进行优先排序至关重要。」

增强数据管理、利用机器学习和人工智能引擎来划分企业信息管理类别,包括数据质量、元数据管理、主数据管理、数据集成、数据库管理系统自我配置和自我调整。增强数据管理能够让很多手动任务实现自动化,并让那些技术水平较低的用户更加自主地使用数据,此外还可以让高技能技术资源专注于更高价值的任务。

趋势2:增强数据管理

Gartner 建议数据和分析领导者与高级业务负责人讨论他们的关键业务优先级,并探索以下主要趋势如何实现这些优先级。

增强数据管理将元数据转换为仅用于审计、沿袭和报告等用途,以及为动态系统提供动力。元数据从被动转为主动状态,成为所有人工智能/机器学习的主要驱动因素。

增强数据管理利用机器学习和人工智能引擎来划分企业信息管理类别,包括数据质量、元数据管理、主数据管理、数据集成、数据库管理系统自我配置和自我调整。增强数据管理能够让很多手动任务实现自动化,并让那些技术水平较低的用户更加自主地使用数据,此外还可以让高技能技术资源专注于更高价值的任务。

趋势 1:增强型数据分析(Augmented Analytics)

到2022年底,通过增加机器学习和自动化服务水平管理,数据管理手动任务量将减少45%。

增强数据管理将元数据转换为仅用于审计、沿袭和报告等用途,以及为动态系统提供动力。元数据从被动转为主动状态,成为所有人工智能/机器学习的主要驱动因素。

作为数据分析的高级增强阶段,增强分析能为分析计划带来更多自动化动能以及创新洞察力。因为在正式进入数据分析之前,都需要对数据进行抽取、清洗、融合等准备工作,以提高数据分析的效率和准确性,更利于决策。而增强分析则能够帮助普通用户在没有数据科学专家或IT人员协助的情况下,访问有效数据,并对理论和假设情况展开测试与验证。

趋势3:持续智能

到2022年底,通过增加机器学习和自动化服务水平管理,数据管理手动任务量将减少45%。

增强型数据分析侧重于增强智能的特定领域,利用机器学习(machine learning)转变分析内容的开发、使用与共享方式。

到2022年,将有超过一半的主要新业务系统将采用持续智能,利用实时上下文数据来改善决策。

趋势3:持续智能

目前国内正在加强这一技术突破的包括几大数据计算厂商,如阿里云、百度云、华为云等,通过对百万数据的计算与汇聚,实现对现实算力的优化,以在未来如智慧大脑领域实现更多突破。

持续智能是一种设计模式,在这种模式中,实时分析被集成到业务操作中,处理当前数据和历史数据以规定响应事件的操作。持续智能提供了决策自动化或决策支持,采用了如增强分析、事件流处理、优化、业务规则管理和机器学习等多种技术。

到2022年,将有超过一半的主要新业务系统将采用持续智能,利用实时上下文数据来改善决策。

Gartner预测,到 2020 年,增强分析将成为分析和商业智能解决方案的主要卖点,相关业务负责人应该在平台功能趋于成熟时率先采用增强型分析。

Sallam表示:持续智能代表了数据和分析团队工作的一个重大变化。在2019年,分析和商业智能团队帮助企业做出更明智的实时决策,将是一个巨大的挑战,同时这也是一个巨大的机会,这可以被看作是运营商业智能的终极目标。

持续智能是一种设计模式,在这种模式中,实时分析被集成到业务操作中,处理当前数据和历史数据以规定响应事件的操作。持续智能提供了决策自动化或决策支持,采用了如增强分析、事件流处理、优化、业务规则管理和机器学习等多种技术。

机器学习和人工智能、增强型分析将为数据和分析市场带来颠覆,因为它将彻底改变开发、消费和共享分析内容的方式,可使数据准备、洞察力获取和洞察力可视化这个过程实现自动化,在许多情况下无需专业的数据科学家。

趋势4:可解释的人工智能

Sallam表示:“持续智能代表了数据和分析团队工作的一个重大变化。在2019年,分析和商业智能团队帮助企业做出更明智的实时决策,将是一个巨大的挑战,同时这也是一个巨大的机会,这可以被看作是运营商业智能的终极目标。”

趋势 2:增强型数据管理(Augmented data Management)

人工智能模型被越来越多地用于增强和取代人类决策。但是,在某些情况下,企业必须证明这些模型是如何做出决策的。为了与用户和利益相关者建立信任,应用负责人必须让这些模型的可解释性更高。

趋势4:可解释的人工智能

增强型数据管理利用机器学习功能和 AI 引擎来制作数据管理类别,包括数据质量、元数据管理、主数据管理、数据集成以及数据库管理系统自我配置和自我调整。

遗憾的是,大多数先进的人工智能模型都是复杂的黑盒子,无法解释它们是如何得出推荐和决策结果的。在数据科学和机器学习平台,可解释的人工智能能够自动生成一个用自然语言解释精确性、属性、模型统计和特征的解释模型。

人工智能模型被越来越多地用于增强和取代人类决策。但是,在某些情况下,企业必须证明这些模型是如何做出决策的。为了与用户和利益相关者建立信任,应用负责人必须让这些模型的可解释性更高。

增强型数据管理将元数据由仅用于审计、沿袭和报告变成支持动态系统。元数据正在从被动变为主动,并且正在成为所有 AI / ML 的主要驱动因素。

趋势5:图形

遗憾的是,大多数先进的人工智能模型都是复杂的黑盒子,无法解释它们是如何得出推荐和决策结果的。在数据科学和机器学习平台,可解释的人工智能能够自动生成一个用自然语言解释精确性、属性、模型统计和特征的解释模型。

它可以自动执行许多手动任务,为技术水平较低的用户提供使用数据的机会。它还有助于高技能的技术资源专注于更多的增值任务。

图形分析是一组分析技术,可以探索组织、人员和交易等利益实体之间的关系。

趋势5:图形

趋势 3:持续型智能(Continuous Intelligence)

到2022年,图形处理和图形DBMS应用将以每年100%的速度增长,不断加速数据准备,并实现更复杂和自适应的数据科学。

图形分析是一组分析技术,可以探索组织、人员和交易等利益实体之间的关系。

持续性数据不仅仅是一种实时数据的新方式;相反,它是一种设计模式,其中实时分析与业务运营相结合,处理当前和历史数据以规定响应事件的行动。

据Gartner称,图形数据存储可以跨数据孤岛有效地建模、探索和查询数据,但是对专业技能的需求限制了对这种技术的采用。

到2022年,图形处理和图形DBMS应用将以每年100%的速度增长,不断加速数据准备,并实现更复杂和自适应的数据科学。

它提供决策自动化或决策支持。持续型智能利用多种技术,比如增强型分析、事件流处理、优化、业务规则管理和机器学习。

由于需要提出关于复杂数据的复杂问题,而使用SQL查询是不切实际或者大规模无法实现的,因此促使图形分析将在未来几年内实现快速增长。

据Gartner称,图形数据存储可以跨数据孤岛有效地建模、探索和查询数据,但是对专业技能的需求限制了对这种技术的采用。

「持续型智能代表了数据和分析团队工作的重大变化,」Gartner 研究副总裁丽 Sallam 人文,「分析和 BI团队在 2019 年帮助企业做出更明智的实时决策,这是一个巨大的挑战 - 也是一个巨大的机会。它可以被看作是运营商业智能的终极目标。」

趋势6:数据结构

由于需要提出关于复杂数据的复杂问题,而使用SQL查询是不切实际或者大规模无法实现的,因此促使图形分析将在未来几年内实现快速增长。

到 2022 年,超过一半的重要新业务系统将采用持续性智能,使用实时上下文数据来改善决策。

数据结构可以在分布式数据环境中实现无摩擦的数据访问和数据共享。它支持单一且一致的数据管理框架,可通过跨孤岛存储进行设计实现无缝的数据访问和数据处理。

趋势6:数据结构

趋势 4:可解释的 AI(Explainable AI)

到2022年,定制的数据结构设计将主要被部署为静态基础设施,迫使企业组织面对完全重新设计更动态数据网格方法的新成本浪潮。

数据结构可以在分布式数据环境中实现无摩擦的数据访问和数据共享。它支持单一且一致的数据管理框架,可通过跨孤岛存储进行设计实现无缝的数据访问和数据处理。

人工智能模型越来越多地用于增强和取代人类决策。但 AI 解决方案如何解释为什么他们得出某些结论?

趋势7:NLP/会话分析

到2022年,定制的数据结构设计将主要被部署为静态基础设施,迫使企业组织面对完全重新设计更动态数据网格方法的新成本浪潮。

大多数这些先进的 AI 模型都是复杂的黑盒子,无法解释他们为何达到特定的推荐或决定。

到2020年,将有50%的分析查询是通过搜索、自然语言处理或语音生成的,或者是自动生成的。分析复杂的数据组合并使企业组织中的每个人都可以访问分析的需求,将推动更广泛的采用,让分析工具像搜索界面或与虚拟助理对话一样简单。

趋势7:NLP/会话分析

这是可解释的人工智能的用武之地。

趋势8:商业化人工智能和机器学习

到2020年,将有50%的分析查询是通过搜索、自然语言处理或语音生成的,或者是自动生成的。分析复杂的数据组合并使企业组织中的每个人都可以访问分析的需求,将推动更广泛的采用,让分析工具像搜索界面或与虚拟助理对话一样简单。

比如说,数据科学和机器学习平台中的可解释型AI可自动生成模型的解释,用自然语言从准确性、属性、模型统计和特征等方面解释模型。

Gartner预测,到2022年,利用人工智能和及其学习技术的新最终用户解决方案中,将有75%是采用商业解决方案而非开源平台构建的。

趋势8:商业化人工智能和机器学习

趋势 5:图形分析

厂商们现在已经开发了连接到开源生态系统的连接器,为企业提供扩展人工智能和机器学习以及实现民主化所必要的功能,例如项目和模型管理、复用、透明度、数据沿袭以及开源技术缺乏的平台集成。

Gartner预测,到2022年,利用人工智能和及其学习技术的新最终用户解决方案中,将有75%是采用商业解决方案而非开源平台构建的。

图形分析是一组分析技术,可帮助企业探索交易,流程和员工等实体之间的关系。

趋势9:区块链

厂商们现在已经开发了连接到开源生态系统的连接器,为企业提供扩展人工智能和机器学习以及实现民主化所必要的功能,例如项目和模型管理、复用、透明度、数据沿袭以及开源技术缺乏的平台集成。

到 2022 年,图形处理和图形数据库管理系统的应用将以每年 100%的速度增长。

区块链和分布式账本技术的核心价值,是在不受信任的参与者网络中提供去中心化的信任。分析用例的潜在影响很大,尤其是那些利用参与者关系和交互影响的用例。

趋势9:区块链

根据 Gartner 的说法,图形数据存储可以跨数据孤岛有效地建模,探索和查询数据,但是对专业技能的需求限制了它们的采用。

然而,在四到五个主要区块链技术成为主导之前,还需要若干年的时间。在此之前,技术最终用户将被迫与主要客户或网络指定的区块链技术和标准进行集成,包括与你现有的数据和分析基础架构的集成。整合成本可能掩盖了任何潜在的好处。区块链是数据源,而不是数据库,不会取代现有的数据管理技术。

区块链和分布式账本技术的核心价值,是在不受信任的参与者网络中提供去中心化的信任。分析用例的潜在影响很大,尤其是那些利用参与者关系和交互影响的用例。

由于需要在复杂数据中提出复杂问题,图形分析将在未来几年内增长,这在使用 SQL 查询时并不总是切实可行或甚至可能。

趋势10:持久内存服务器

然而,在四到五个主要区块链技术成为主导之前,还需要若干年的时间。在此之前,技术最终用户将被迫与主要客户或网络指定的区块链技术和标准进行集成,包括与你现有的数据和分析基础架构的集成。整合成本可能掩盖了任何潜在的好处。区块链是数据源,而不是数据库,不会取代现有的数据管理技术。

趋势 6:数据结构(Data Fabric)

新的持久内存技术将有助于降低采用内存计算架构的成本和复杂性。持久内存代表DRAM和NAND闪存之间的一个新内存层,可以为高性能工作负载提供经济高效的大容量内存。这种技术有可能改善应用的性能、可用性、启动时间、集群方法和安全实践,同时控制成本。,此外还可以通过减少数据复制的需要,帮助企业组织降低应用和数据体系结构的复杂性。

趋势10:永久内存服务器

数据结构都是关于单一且一致的数据管理框架。它着眼于在分布式数据环境中实现无摩擦访问和数据共享,而不是孤立存储。

Feinberg说:数据量正在快速增加,将数据实时转化为价值的紧迫性,也同样在快速增长。新的服务器工作负载不仅要求更高的CPU性能,还要求大容量内存和更快的存储。

新的永久内存技术将有助于降低采用内存计算架构的成本和复杂性。永久内存代表DRAM和NAND闪存之间的一个新内存层,可以为高性能工作负载提供经济高效的大容量内存。这种技术有可能改善应用的性能、可用性、启动时间、集群方法和安全实践,同时控制成本。,此外还可以通过减少数据复制的需要,帮助企业组织降低应用和数据体系结构的复杂性。

到 2022 年,定制数据结构配置将主要用作静态基础架构,迫使组织进入新一波的成本控制浪潮,以完全重新设计更动态的数据网格方法。

责任编辑:李丽

Feinberg说:“数据量正在快速增加,将数据实时转化为价值的紧迫性,也同样在快速增长。新的服务器工作负载不仅要求更高的CPU性能,还要求大容量内存和更快的存储。”

趋势 7:NLP /会话分析(NLP/Conversational Analytics)

文章来源 : 中国工业新闻网

到 2020 年,50%的分析查询将通过搜索、自然语言处理或语音生成,或者将自动生成。

分析复杂的数据组合并使组织中的每个人都可以访问分析的需求将推动更广泛的采用,使分析工具将如同搜索界面或与虚拟助手的对话一样简单。

根据另一项单独研究,NLP 用例非常庞大,预计到 2020 年 NLP 市场价值将达到 134 亿美元。

趋势 8:商用的人工智能和机器学习(Commercial AI and ML)

到 2022 年,75%利用 ML 和 AI 技术的新终端用户解决方案将采用商业解决方案,而非开源平台的方式构建。

商业供应商已经在开源生态系统中创建了连接器,它们为组织提供了扩展 AI 和所需的功能,例如项目和模型管理、透明度、复用、数据沿袭、平台凝聚力以及开源技术所缺乏的集成。

趋势 9:区块链(Blockchain)

企业可以使用区块链来解决数据管理问题吗?

数据管理对 CTO 来说是一个持续不断的挑战,但 Bluzelle 首席执行官 Pavel Bains 认为区块链技术可以提供解决方案。

区块链和分布式账本技术的核心价值主张是在不受信任的参与者网络中提供去中心化的信任。区块链对于数据分析的潜在影响很大,尤其是对利用参与者关系和交互的那些企业的影响。

然而,在四到五个主要区块链技术成为主导之前,还需要几年时间。

但是,区块链是数据源,而不是数据库,不会取代现有的数据管理技术。

趋势 10:持久性内存服务器(Persistent Memory Servers)

持久存储器技术旨在降低采用内存计算的架构的成本和复杂性。持久性内存代表 DRAM 和 NAND 闪存之间的新内存层,可为高性能工作负载提供经济高效的大容量内存。

「数据量正在激增,实时将数据转化为价值的紧迫性正以同样快的速度增长,」Donald 表示,「新的服务器工作负载不仅要求更快的 CPU 性能,还要求大容量内存和更快的存储系统。」

本文由澳门威斯尼人平台登录发布于计算机编程,转载请注明出处:二〇一六年数量和解析技术十大趋势,巩固型解析成为尤为重要卖点

相关阅读